Differentiable Constitutive Modeling with FEniCSx and JAX

Jérémy Bleyer

coll. Andrey Latyshev, Corrado Maurini, Jack S. Hale

Ecole Nationale des Ponts et Chaussées Laboratoire Navier, ENPC, IP Paris, Univ Gustave Eiffel, CNRS

FEniCS 2025 June 18th-20th 2025

Constitutive modeling

Constitutive behavior: complements balance equations and kinematic relations e.g. elasticity, viscoelasticity, plasticity, damage, temperature effects...

- Modelling approaches: phenomenological, micromechanics/mean-field, computational (FE², FFT,reduced models), data-driven
- Thermodynamics: path/history-dependence, internal state variables, evolution equations

Constitutive modeling

Constitutive behavior: complements **balance equations** and **kinematic relations** e.g. elasticity, viscoelasticity, plasticity, damage, temperature effects...

- Modelling approaches: phenomenological, micromechanics/mean-field, computational (FE², FFT,reduced models), data-driven
- Thermodynamics: path/history-dependence, internal state variables, evolution equations
- Generalized continua: strain gradient, Cosserat, micromorphic, internal length
- Multi-physics: strongly coupled behaviors e.g. poromechanics

$$\begin{split} \mathrm{d} \pmb{\sigma} &= \mathbb{C}_{\xi} : \mathrm{d} \pmb{\varepsilon} - b_{\xi} S_{\ell} \, \mathrm{d} p \pmb{I} - 3\alpha K_{\xi} \, \mathrm{d} T \pmb{I} \\ \mathrm{d} \pmb{\phi} &= b_{\xi} \, \mathrm{tr} (\mathrm{d} \pmb{\varepsilon}) + \frac{b_{\xi} - \phi_{0\xi}}{K_{\mathrm{S}}} \, \mathrm{d} p - 3\alpha (b_{\xi} - \phi_{0\xi}) \, \mathrm{d} T - \Delta V_{\mathrm{S}} \, \mathrm{d} \xi \\ \mathrm{d} S_{\mathrm{S}} &= 3\alpha K_{\xi} \, \mathrm{tr} (\pmb{\varepsilon}) - 3\alpha (b_{\xi} - \phi_{0\xi}) \, \mathrm{d} p + C \frac{1 - \phi_{0\xi}}{T_{0}} \, \mathrm{d} T + \frac{\mathcal{L}_{\xi}}{T_{0}} \, \mathrm{d} \xi \end{split}$$

Constitutive modeling

Constitutive behavior: complements balance equations and kinematic relations e.g. elasticity, viscoelasticity, plasticity, damage, temperature effects...

- Modelling approaches: phenomenological, micromechanics/mean-field, computational (FE², FFT,reduced models), data-driven
- Thermodynamics: path/history-dependence, internal state variables, evolution equations
- Generalized continua: strain gradient, Cosserat, micromorphic, internal length
- Multi-physics: strongly coupled behaviors e.g. poromechanics
- Material properties: calibration/identification, variability/uncertainties

Outline

1 Computational constitutive modeling

2 JAX and Automatic Differentiation

3 Implicit Automatic Differentiation

Computational aspects of constitutive modeling

Generic (small strain) setting: Find $u \in V$ such that:

$$\int_{\Omega} \boldsymbol{\sigma}(\nabla^{s} \boldsymbol{u}) : \nabla^{s} \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, d\Omega + \int_{\partial \Omega_{\mathbf{N}}} \boldsymbol{T} \cdot \boldsymbol{v} \, dS \quad \forall \boldsymbol{v} \in V$$
 (1)

Local non-linear (implicit) mapping

$$arepsilon \longrightarrow oxed{ exttt{CONSTITUTIVE RELATION}} \longrightarrow \sigma$$

Computational aspects of constitutive modeling

Generic (small strain) setting: Find $u \in V$ such that:

$$\int_{\Omega} \boldsymbol{\sigma}(\nabla^{s} \boldsymbol{u}) : \nabla^{s} \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, d\Omega + \int_{\partial \Omega_{\mathbf{N}}} \boldsymbol{T} \cdot \boldsymbol{v} \, dS \quad \forall \boldsymbol{v} \in V$$
 (1)

Local non-linear (implicit) mapping

$$arepsilon, \mathcal{S}_n \longrightarrow \boxed{\mathsf{CONSTITUTIVE}\;\mathsf{RELATION}} \longrightarrow oldsymbol{\sigma}, \mathcal{S}_{n+1}$$

- implicit non-linear equation
- ullet implicit non-linear equations with state variables \mathcal{S}_n
- non-linear FE computation on a RVE
- Neural-Network inference
- closest-point projection onto a data manifold

Computational aspects of constitutive modeling

Generic (small strain) setting: Find $u \in V$ such that:

$$\int_{\Omega} \boldsymbol{\sigma}(\nabla^{s} \boldsymbol{u}) : \nabla^{s} \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, d\Omega + \int_{\partial \Omega_{\mathbf{N}}} \boldsymbol{T} \cdot \boldsymbol{v} \, dS \quad \forall \boldsymbol{v} \in V$$
 (1)

Local non-linear (implicit) mapping

$$arepsilon, \mathcal{S}_n \longrightarrow \boxed{\mathsf{CONSTITUTIVE}\; \mathsf{RELATION}} \longrightarrow oldsymbol{\sigma}, \mathcal{S}_{n+1}$$

- implicit non-linear equation
- ullet implicit non-linear equations with state variables \mathcal{S}_n
- non-linear FE computation on a RVE
- Neural-Network inference
- closest-point projection onto a data manifold

Tangent operators

Newton method for solving (1) requires the **Jacobian**:

e.g.
$$\delta \boldsymbol{\sigma}(\nabla^{s} \boldsymbol{u}) = \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{\varepsilon}} : \nabla^{s} \delta \boldsymbol{u}$$

sometimes also $\frac{\partial \sigma}{\partial \mathcal{S}_n}$, $\frac{\partial \mathcal{S}_{n+1}}{\partial \varepsilon}$, $\frac{\partial \mathcal{S}_{n+1}}{\partial \mathcal{S}_n}$ (multiphysics)

dolfinx_materials: Python package for material behaviors

Objective: provide simple way of defining and handling complex material constitutive behaviors within dolfinx

Concept: see the constitutive relation as a *black-box function* mapping **gradients** (e.g. strain $\varepsilon = \nabla^s \mathbf{u}$) to fluxes (e.g. stresses σ) at the level of **quadrature points**

Concrete implementation of the constitutive relation

- a user-defined Python function
- provided by an external library (e.g. behaviors compiled with MFront, UMATs, etc.)
- convex optimization solvers
- neural networks, model-free data-driven, etc.

A Python elasto-plastic behaviour

Material: provides info at the quadrature point level e.g. dimension of gradient inputs/stress outputs, stored internal state variables, required external state variables

```
class ElastoPlasticIsotropicHardening(Material):
    @property
   def internal_state_variables(self):
        return {"p": 1} # cumulated plastic strain
   def constitutive_update(self, eps, state):
        eps old = state["Strain"]
        deps = eps - eps_old
        p_old = state["p"]
        C = self.elastic_model.compute_C()
        sig_el = state["Stress"] + C @ deps
                                               # elastic predictor
        s_el = K() @ sig_el
        sig_Y_old = self.yield_stress(state["p"])
        sig_eq_el = np.sqrt(3 / 2.0) * np.linalg.norm(s_el)
        if sig_eq_el - sig_Y_old >= 0:
            dp = fsolve(lambda dp: sig_eq_el - 3*mu*dp - self.yield_stress(p_old + dp), 0.0)
        else:
            dp = 0
        state["Strain"] = eps old + deps
        state["p"] += dp
        return sig_el - 3 * mu * s_el / sig_eq_el * dp
```

Outline

Computational constitutive modeling

2 JAX and Automatic Differentiation

3 Implicit Automatic Differentiation

JAX for constitutive modeling

 ${\sf JAX} = {\sf accelerated}$ (GPU) array computation and program transformation designed for HPC and large-scale machine learning

```
def constitutive_update(eps, state, dt):
    [...]
```

• JIT and automatic vectorization

```
batch_constitutive_update = jax.jit(jax.vmap(constitutive_update, in_axes=(0, 0, None))
```

Automatic Differentiation

```
constitutive_update_tangent = jax.jacfwd(constitutive_update, argnums=0, has_aux=True)
```

A simple example

Linear viscoelasticity

see also this COMET demo

```
class LinearViscoElasticity(JAXMaterial):
    [...]
    @property
   def internal_state_variables(self):
        return {"epsv": 6}
    @tangent_AD
    def constitutive_update(self, eps, state, dt):
        epsv_old = state["epsv"]
        eps_old = state["Strain"]
        deps = eps - eps_old
        epsv_new = (
            eps
            + inp.exp(-dt / self.tau) * (epsv old - eps old)
            - inp.exp(-dt / 2 / self.tau) * deps
        sig = self.branch0.C @ eps + self.branch1.C @ (eps - epsv_new)
        state["epsv"] = epsv_new
        state["Strain"] = eps
        state["Stress"] = sig
   return sig. state
```

What is Automatic Differentiation?

- Numerical Differentiation: $f'(x) = \frac{f(x+h) f(x)}{h}$ with e.g. $h = 10^{-6}$ truncation/rounding errors, O(dim) evauations
- Symbolic differentatiation: f represented as an expression graph, generates another expression graph of the derivative expression swell, duplicate operations, no-closed form expression
- Automatic differentiation: operates directly on the computer program, no symbolic representation (numerical evaluation only), exact forward and reverse mode (back-propagation in ML)

Forward propagation of derivative values

[Wikipedia]

Differentiating through elastoplasticity

von Mises plasticity with nonlinear isotropic hardening R(p)

Return mapping algorithm

Elastic predictor $oldsymbol{\sigma}_{\mathsf{elas}} = oldsymbol{\sigma}_{\mathsf{n}} + \mathbb{C}: \Delta arepsilon$

$$f_{\mathsf{elast}} = \sigma_{\mathsf{eq}} - R(p_n)$$

- if $f_{\mathsf{elas}} < 0$: $\sigma_{n+1} = \sigma_{\mathsf{elas}}$ and $\Delta p = 0$
- ullet else: $oldsymbol{\sigma}_{n+1} = oldsymbol{\sigma}_{\mathsf{elas}} 2\mu\Deltaarepsilon^{\mathsf{p}}$ with $\Deltaarepsilon^{\mathsf{p}} = \Delta p rac{3}{2\sigma_{\mathsf{elas}}^{\mathsf{elas}}} oldsymbol{s}_{\mathsf{elas}}$

Solve
$$r(\Delta p) = \sigma_{\text{eq}}^{\text{elas}} - 3\mu\Delta p - R(p_n + \Delta p) = 0$$
 (2)

e.g. using fixed-point algorithm, Newton method, bisection, etc.

Every step is differentiable with AD, except (2).

Differentiating through elastoplasticity

von Mises plasticity with nonlinear isotropic hardening R(p)

Return mapping algorithm

Elastic predictor $\sigma_{\mathsf{elas}} = \sigma_{\mathsf{n}} + \mathbb{C} : \Delta \varepsilon$

$$f_{\mathsf{elast}} = \sigma_{\mathsf{eq}} - R(p_n)$$

- if $f_{\rm elas} < 0$: $\sigma_{n+1} = \sigma_{\rm elas}$ and $\Delta p = 0$
- else: $\sigma_{n+1} = \sigma_{\rm elas} 2\mu\Delta\varepsilon^{\rm p}$ with $\Delta\varepsilon^{\rm p} = \Delta p \frac{3}{2\sigma_{\rm elas}^{\rm elas}} s_{\rm elas}$

Solve
$$r(\Delta p) = \sigma_{\text{eq}}^{\text{elas}} - 3\mu\Delta p - R(p_n + \Delta p) = 0$$
 (2)

e.g. using fixed-point algorithm, Newton method, bisection, etc.

Every step is differentiable with AD, except (2).

Algorithm unrolling

Any algorithm used to solve (2) can be written in JAX using loops, conditionals, etc. We can **differentiate through the algorithm** (unrolling the algorithm iterations).

Outline

1 Computational constitutive modeling

2 JAX and Automatic Differentiation

3 Implicit Automatic Differentiation

Implicit automatic differentiation [Blondel et al., 2022]

We can leverage instead the implicit function theorem e.g. root finding: Find x_{θ} s.t. $F(x_{\theta}; \theta) = 0$

Implicit automatic differentiation [Blondel et al., 2022]

We can leverage instead the **implicit function theorem** e.g. root finding: Find x_{θ} s.t. $F(x_{\theta}; \theta) = 0$ To find $\partial_{\theta}x_{\theta}$, we differentiate the equation so that:

$$[\partial_x F] \partial_\theta x_\theta + \partial_\theta F = 0$$

$$\Rightarrow \quad \partial_\theta x_\theta = -[\partial_x F]^{-1} \partial_\theta F$$

need only to solve a linear system for the jacobian matrix $[\partial_x F]$ the derivative computation becomes independent from the algorithm used to solve the nonlinear system, can use AD to form the jacobian $[\partial_x F]$

Implicit automatic differentiation [Blondel et al., 2022]

We can leverage instead the **implicit function theorem** e.g. root finding: Find x_{θ} s.t. $F(x_{\theta}; \theta) = 0$ To find $\partial_{\theta} x_{\theta}$, we differentiate the equation so that:

$$\begin{split} [\partial_x F] \partial_\theta x_\theta + \partial_\theta F &= 0 \\ \Rightarrow \quad \partial_\theta x_\theta &= -[\partial_x F]^{-1} \partial_\theta F \end{split}$$

need only to solve a linear system for the jacobian matrix $[\partial_x F]$ the derivative computation becomes independent from the algorithm used to solve the nonlinear system, can use AD to form the jacobian $[\partial_x F]$ Implementation of JAXNewton

```
class JAXNewton:
    """A tiny Newton solver implemented in JAX.
    Derivatives are computed via custom implicit differentiation."""

def solve(self, x):
    solve = lambda f, x: newton_solve(x, f, jax.jacfwd(f), self.params)
    tangent_solve = lambda g, y: _solve_linear_system(x, jax.jacfwd(g)(y), y)

return jax.lax.custom_root(self.r, x, solve, tangent_solve, has_aux=True)
```

Small-strain elastoplasticity

```
@tangent_AD
def constitutive_update(self, eps, state, dt):
    deps = eps - state["Strain"]
    p_old = state["p"]
    mu = self.elastic model.mu
    sig el = state["Stress"] + self.elastic model.C @ deps
    sig_eq_el = jnp.clip(self.equivalent_stress(sig_el), a_min=1e-8)
    n_el = dev(sig_el) / sig_eq_el
    vield criterion = sig eq el - self.vield stress(p old)
    deps_p_elastic = lambda dp: jnp.zeros(6)
    deps_p_plastic = lambda dp: 3 / 2 * n_el * dp
    def deps_p(dp, vield_criterion):
        return jax.lax.cond(yield_criterion < 0.0, deps_p_elastic, deps_p_plastic, dp)
    def r(dp):
        r elastic = lambda dp: dp
        r_plastic = lambda dp: sig_eq_el - 3 * mu * dp - self.yield_stress(p_old + dp)
        return jax.lax.cond(yield_criterion < 0.0, r_elastic, r_plastic, dp)
    solver = JAXNewton(r)
    dp. data = solver.solve(0.0)
    sig = sig_el - 2 * mu * deps_p(dp, yield_criterion)
    state["p"] += dp
    return sig. state
```

Small-strain elastoplasticity


```
E, nu = 70e3, 0.3
elastic_model = LinearElasticIsotropic(E, nu)

sig0 = 350.0
sigu = 500.0
b = 1e3
def yield_stress(p): # Voce-type exponential hardening
    return sig0 + (sigu - sig0) * (1 - jnp.exp(-b * p))

material = vonMisesIsotropicHardening(elastic_model,
    yield_stress)
```


F^eF^p finite-strain plasticity

$$\begin{split} & \boldsymbol{F} = \boldsymbol{F}^{\mathrm{e}} \boldsymbol{F}^{\mathrm{p}} \; ; \quad \boldsymbol{\bar{b}}^{\mathrm{e}} = J^{-2/3} \boldsymbol{F}^{\mathrm{e}} (\boldsymbol{F}^{\mathrm{e}})^{\mathrm{T}} \\ & \boldsymbol{\tau} = \mu \operatorname{dev}(\boldsymbol{\bar{b}}^{\mathrm{e}}) + \frac{\kappa}{2} (J^2 - 1) \boldsymbol{I} \\ & \boldsymbol{f}(\; \boldsymbol{\bar{b}}^{\mathrm{e}}) = \mu \|\boldsymbol{s}\| - \sqrt{\frac{2}{3}} R(p_n + \Delta p) \leq 0 \\ & 0 = \operatorname{dev}(\boldsymbol{\bar{b}}^{\mathrm{e}} - \boldsymbol{\bar{b}}^{\mathrm{e}}_{\mathsf{trial}}) + \sqrt{\frac{2}{3}} \Delta p \operatorname{tr}(\boldsymbol{\bar{b}}^{\mathrm{e}}) \frac{\boldsymbol{s}}{\|\boldsymbol{s}\|} \end{split}$$

Resolution involves local solving of a Newton system of size 7 Tangent operator in PK1/F using **implicit AD**:

$$m{P} = m{ au} m{F}^{-1}$$
 $\mathbb{C}_{\mathsf{tang}} = rac{\partial m{P}}{\partial m{F}}$

F^eF^p finite-strain plasticity

Constitutive equation: jax[cpu] or jax[gpu] on NVIDIA RTX A1000 Linear solver: PETSc gmres + gamg

Global linear solves - Constitutive behavior integration

Material model calibration

Material behavior: $\sigma = F(\varepsilon, S_n; \theta)$ with material parameters θ e.g. $\theta = (E, \nu, \sigma_0, \sigma_u, b)$ isotropic elasticity + von Mises Voce hardening plasticity

Calibration

$$oldsymbol{ heta}^* = \mathop{\mathsf{arg\,min}}_{oldsymbol{ heta}} \sum_k \| oldsymbol{\sigma}^{(k)} - oldsymbol{\sigma}^{(k)}_{\mathsf{data}} \|^2$$

gradient-based optimisation, needs **material parameters sensitivities**

$$\frac{\partial \boldsymbol{\sigma}^{(k)}}{\partial \boldsymbol{\theta}} = \frac{\partial \mathsf{F}}{\partial \boldsymbol{\sigma}}(\boldsymbol{\varepsilon}^{(k)}, \mathcal{S}_n^{(k)}; \boldsymbol{\theta})$$

easy to obtain with JAX

Integration within FEniCSx using External Operators

General concept of **non-UFL black-box** object implemented using **External Operator** [[Bouziani et al., 2021]]

$$\int_{\Omega} \boldsymbol{\sigma}(\nabla^{s} \boldsymbol{u}) : \nabla^{s} \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, d\Omega + \int_{\partial \Omega_{\boldsymbol{N}}} \boldsymbol{T} \cdot \boldsymbol{v} \, dS \quad \forall \boldsymbol{v} \in V$$

 $\sigma(\nabla^s u)$ id defined through a UFL object FEMExternalOperator. The concrete behavior of the external operator is determined by a user program:

```
def sigma_call(epsilon: np.ndarray) -> np.ndarray:
    ...
    "<numerical algorithm>"
    ...
    return sigma_ # global vector of values at quadrature points
```

Inside of sigma_call, any external software can be used.

Andrey Latyshev, Jérémy Bleyer, Corrado Maurini, Jack S Hale. Expressing general constitutive models in FEniCSx using external operators and algorithmic automatic differentiation. 2024. https://hal.science/hal-04735022

Automatic differentiation of external operators

Forms containing external operators can be differentiated via ufl.derivative

```
J = ufl.derivative(F, u, ufl.TrialFunction(V))
J_expanded = ufl.algorithms.expand_derivatives(J)
```

The **derivative** of the external operator is a **new external operator**. The user must provide its concrete implementation:

```
def dsigma_call(epsilon: np.ndarray) -> np.ndarray:
    ...
    "<numerical algorithm>"
    ...
    return dsigma_ # global vector of values at quadrature points
```


Conclusions and Outlook

dolfinx_materials project available at

https://github.com/bleyerj/dolfinx_materials

- AD: modern ML frameworks to rethink material behavior libraries
- tangent operators and material parameters sensitivities
- implicit AD is key

External Operators available at

https://github.com/a-latyshev/dolfinx-external-operator

Outlook

- benchmarks on large-scale systems
- Neural network material models

Conclusions and Outlook

dolfinx_materials project available at

https://github.com/bleyerj/dolfinx_materials

- AD: modern ML frameworks to rethink material behavior libraries
- tangent operators and material parameters sensitivities
- implicit AD is key

External Operators available at

https://github.com/a-latyshev/dolfinx-external-operator

Outlook

- benchmarks on large-scale systems
- Neural network material models

Thank you for your attention!