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Constitutive modeling

Constitutive behavior: complements balance equations and kinematic relations
e.g. elasticity, viscoelasticity, plasticity, damage, temperature effects...

Modelling approaches: phenomenological, micromechanics/mean-field,
computational (FE2 , FFT,reduced models), data-driven

Thermodynamics: path/history-dependence, internal state variables, evolution
equations
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Generalized continua: strain gradient, Cosserat, micromorphic, internal length

Multi-physics: strongly coupled behaviors e.g. poromechanics

Material properties: calibration/identification, variability/uncertainties
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Computational constitutive modeling

Computational aspects of constitutive modeling
Generic (small strain) setting: Find u ∈ V such that:∫

Ω

σ(∇suuu) : ∇sv dΩ =

∫
Ω

f · v dΩ+

∫
∂ΩN

T · v dS ∀v ∈ V (1)

Local non-linear (implicit) mapping

ε −→ CONSTITUTIVE RELATION −→ σ

Tangent operators

Newton method for solving (1) requires the Jacobian:

e.g. δσ(∇su) =
∂σ

∂ε
: ∇sδu

sometimes also ∂σ
∂Sn

, ∂Sn+1
∂ε

, ∂Sn+1
∂Sn

(multiphysics)
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Computational constitutive modeling

dolfinx_materials: Python package for material behaviors

Objective: provide simple way of defining and handling complex material constitutive
behaviors within dolfinx
Concept: see the constitutive relation as a black-box function mapping gradients (e.g.
strain ε = ∇su) to fluxes (e.g. stresses σ) at the level of quadrature points
Concrete implementation of the constitutive relation

a user-defined Python function

provided by an external library (e.g. behaviors compiled with MFront,UMATs, etc.)

convex optimization solvers

neural networks, model-free data-driven, etc.
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Computational constitutive modeling

A Python elasto-plastic behaviour

Material: provides info at the quadrature point level e.g. dimension of gradient
inputs/stress outputs, stored internal state variables, required external state variables

class ElastoPlasticIsotropicHardening(Material):
@property
def internal_state_variables(self):

return {"p": 1} # cumulated plastic strain

def constitutive_update(self, eps, state):
eps_old = state["Strain"]
deps = eps - eps_old
p_old = state["p"]

C = self.elastic_model.compute_C()
sig_el = state["Stress"] + C @ deps # elastic predictor
s_el = K() @ sig_el
sig_Y_old = self.yield_stress(state["p"])
sig_eq_el = np.sqrt(3 / 2.0) * np.linalg.norm(s_el)
if sig_eq_el - sig_Y_old >= 0:

dp = fsolve(lambda dp: sig_eq_el - 3*mu*dp - self.yield_stress(p_old + dp), 0.0)
else:

dp = 0
state["Strain"] = eps_old + deps
state["p"] += dp
return sig_el - 3 * mu * s_el / sig_eq_el * dp
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JAX and Automatic Differentiation

JAX for constitutive modeling

JAX = accelerated (GPU) array computation and program transformation
designed for HPC and large-scale machine learning

def constitutive_update(eps, state, dt):
[...]

JIT and automatic vectorization

batch_constitutive_update = jax.jit(jax.vmap(constitutive_update, in_axes=(0, 0, None))

Automatic Differentiation

constitutive_update_tangent = jax.jacfwd(constitutive_update, argnums=0, has_aux=True)
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JAX and Automatic Differentiation

A simple example

Linear viscoelasticity see also this COMET demo

class LinearViscoElasticity(JAXMaterial):
[...]

@property
def internal_state_variables(self):

return {"epsv": 6}

@tangent_AD
def constitutive_update(self, eps, state, dt):

epsv_old = state["epsv"]
eps_old = state["Strain"]
deps = eps - eps_old
epsv_new = (

eps
+ jnp.exp(-dt / self.tau) * (epsv_old - eps_old)
- jnp.exp(-dt / 2 / self.tau) * deps

)
sig = self.branch0.C @ eps + self.branch1.C @ (eps - epsv_new)
state["epsv"] = epsv_new
state["Strain"] = eps
state["Stress"] = sig

return sig, state

Jérémy Bleyer (Laboratoire Navier) Differentiable Constitutive Modeling with FEniCSx and JAX June 18-20 2025 7 / 18

https://bleyerj.github.io/comet-fenicsx/tours/nonlinear_problems/linear_viscoelasticity_jax/linear_viscoelasticity_jax.html


JAX and Automatic Differentiation

What is Automatic Differentiation ?

Numerical Differentiation: f ′(x) =
f (x + h)− f (x)

h
with e.g. h = 10−6

truncation/rounding errors, O(dim) evauations
Symbolic differentatiation: f represented as an expression graph, generates another
expression graph of the derivative
expression swell, duplicate operations, no-closed form expression
Automatic differentiation: operates directly on the computer program, no symbolic
representation (numerical evaluation only), exact
forward and reverse mode (back-propagation in ML)

[Wikipedia]

def f(x):
[...]
for i in range(n):

[...]

def f(x):
if cond:

[...]
else:

[...]

def f(x):
[...]
while cond:

[...]
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JAX and Automatic Differentiation

Differentiating through elastoplasticity

von Mises plasticity with nonlinear isotropic hardening R(p)

Return mapping algorithm

Elastic predictor σelas = σn + C : ∆ε
felast = σeq − R(pn)

if felas < 0: σn+1 = σelas and ∆p = 0

else: σn+1 = σelas − 2µ∆εp with ∆εp = ∆p
3

2σelas
eq

selas

Solve r(∆p) = σelas
eq − 3µ∆p − R(pn +∆p) = 0 (2)

e.g. using fixed-point algorithm, Newton method, bisection, etc.

Every step is differentiable with AD, except (2).

Algorithm unrolling

Any algorithm used to solve (2) can be written in JAX using loops, conditionals, etc. We
can differentiate through the algorithm (unrolling the algorithm iterations).
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Implicit Automatic Differentiation
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Implicit Automatic Differentiation

Implicit automatic differentiation [Blondel et al., 2022]

We can leverage instead the implicit function theorem
e.g. root finding: Find xθ s.t. F (xθ; θ) = 0

To find ∂θxθ, we differentiate the equation so that:

[∂xF ]∂θxθ + ∂θF = 0

⇒ ∂θxθ = −[∂xF ]
−1∂θF

need only to solve a linear system for the jacobian matrix [∂xF ]
the derivative computation becomes independent from the algorithm used to solve the
nonlinear system, can use AD to form the jacobian [∂xF ]
Implementation of JAXNewton

class JAXNewton:
"""A tiny Newton solver implemented in JAX.
Derivatives are computed via custom implicit differentiation."""

def solve(self, x):
solve = lambda f, x: newton_solve(x, f, jax.jacfwd(f), self.params)
tangent_solve = lambda g, y: _solve_linear_system(x, jax.jacfwd(g)(y), y)

return jax.lax.custom_root(self.r, x, solve, tangent_solve, has_aux=True)
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Implicit Automatic Differentiation

Small-strain elastoplasticity

@tangent_AD
def constitutive_update(self, eps, state, dt):

deps = eps - state["Strain"]
p_old = state["p"]
mu = self.elastic_model.mu
sig_el = state["Stress"] + self.elastic_model.C @ deps
sig_eq_el = jnp.clip(self.equivalent_stress(sig_el), a_min=1e-8)
n_el = dev(sig_el) / sig_eq_el
yield_criterion = sig_eq_el - self.yield_stress(p_old)

deps_p_elastic = lambda dp: jnp.zeros(6)
deps_p_plastic = lambda dp: 3 / 2 * n_el * dp
def deps_p(dp, yield_criterion):

return jax.lax.cond(yield_criterion < 0.0, deps_p_elastic, deps_p_plastic, dp)

def r(dp):
r_elastic = lambda dp: dp
r_plastic = lambda dp: sig_eq_el - 3 * mu * dp - self.yield_stress(p_old + dp)
return jax.lax.cond(yield_criterion < 0.0, r_elastic, r_plastic, dp)

solver = JAXNewton(r)
dp, data = solver.solve(0.0)
sig = sig_el - 2 * mu * deps_p(dp, yield_criterion)
state["p"] += dp
return sig, state
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Implicit Automatic Differentiation

Small-strain elastoplasticity

E, nu = 70e3, 0.3
elastic_model = LinearElasticIsotropic(E, nu)

sig0 = 350.0
sigu = 500.0
b = 1e3
def yield_stress(p): # Voce-type exponential hardening

return sig0 + (sigu - sig0) * (1 - jnp.exp(-b * p))

material = vonMisesIsotropicHardening(elastic_model,
yield_stress)
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Implicit Automatic Differentiation

F eF p finite-strain plasticity

F = F eF p ; b̄e
= J−2/3F e(F e)T

τ = µ dev(b̄e
) +

κ

2
(J2 − 1)I

f ( b̄e
) = µ∥s∥ −

√
2
3
R(pn +∆p) ≤ 0

0 = dev(b̄e − b̄e
trial) +

√
2
3
∆p tr(b̄e

)
s

∥s∥

Resolution involves local solving of a Newton system of size 7
Tangent operator in PK1/F using implicit AD:

P = τF−1

Ctang =
∂P
∂F
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Implicit Automatic Differentiation

F eF p finite-strain plasticity

Constitutive equation: jax[cpu] or jax[gpu] on NVIDIA RTX A1000
Linear solver: PETSc gmres + gamg

Global linear solves – Constitutive behavior integration
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Implicit Automatic Differentiation

Material model calibration

Material behavior: σ = F(ε,Sn;θ) with material parameters θ
e.g. θ = (E , ν, σ0, σu, b) isotropic elasticity + von Mises Voce hardening plasticity

Calibration

θ∗ = argmin
θ

∑
k

∥σ(k) − σ
(k)
data∥

2

gradient-based optimisation, needs
material parameters sensitivities

∂σ(k)

∂θ
=

∂F
∂σ

(ε(k),S(k)
n ;θ)

easy to obtain with JAX

Jérémy Bleyer (Laboratoire Navier) Differentiable Constitutive Modeling with FEniCSx and JAX June 18-20 2025 15 / 18



Implicit Automatic Differentiation

Integration within FEniCSx using External Operators

General concept of non-UFL black-box object implemented using External Operator
[[Bouziani et al., 2021]]∫

Ω

σ(∇suuu) : ∇sv dΩ =

∫
Ω

f · v dΩ+

∫
∂ΩN

T · v dS ∀v ∈ V

σ(∇suuu) id defined through a UFL object FEMExternalOperator. The concrete behavior
of the external operator is determined by a user program:

def sigma_call(epsilon: np.ndarray) -> np.ndarray:
...
"<numerical algorithm>"
...
return sigma_ # global vector of values at quadrature points

Inside of sigma_call, any external software can be used.

Andrey Latyshev, Jérémy Bleyer, Corrado Maurini, Jack S Hale.
Expressing general constitutive models in FEniCSx using exter-
nal operators and algorithmic automatic differentiation. 2024.
https://hal.science/hal-04735022
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Implicit Automatic Differentiation

Automatic differentiation of external operators

Forms containing external operators can be differentiated via ufl.derivative

J = ufl.derivative(F, u, ufl.TrialFunction(V))
J_expanded = ufl.algorithms.expand_derivatives(J)

The derivative of the external operator is a new external operator. The user must
provide its concrete implementation:

def dsigma_call(epsilon: np.ndarray) -> np.ndarray:
...
"<numerical algorithm>"
...
return dsigma_ # global vector of values at quadrature points
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Implicit Automatic Differentiation

Conclusions and Outlook

dolfinx_materials project available at

https://github.com/bleyerj/dolfinx_materials

AD: modern ML frameworks to rethink material behavior libraries
tangent operators and material parameters sensitivities
implicit AD is key

External Operators available at

https://github.com/a-latyshev/dolfinx-external-operator

Outlook
benchmarks on large-scale systems
Neural network material models

Thank you for your attention!
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