jaxmat.materials.viscoplastic_flows module#
- class VoceHardening[source]#
Bases:
ModuleVoce hardening model for stress-strain behavior.
\[ \sigma_Y(p)=\sigma_0 + (\sigma_\text{u}-\sigma_0)(1-\exp(-bp)) \]References
Voce, E. (1955). “A Practical Strain-Hardening Function.” Metallurgia, 51, 219-226.
-
sig0:
float# Initial yield stress \(\sigma_0\).
-
sigu:
float# Saturation stress at large strains \(\sigma_\text{u}\).
-
b:
float# Rate of hardedning \(b\).
- class NortonFlow[source]#
Bases:
ModuleA Norton viscoplastic flow with overstress.
\[\dot{\beps}^\text{vp} = \left\langle\dfrac{f(\bsig) - \sigma_y}{K}\right\rangle_+^m\]where \(f(\bsig)-\sigma_y\) is the overstress, \(\langle \cdot\rangle_+\) is the positive part.
-
K:
float# Characteristic stress \(K\) of the Norton flow.
-
m:
float# Norton power-law exponent
-
K:
- class AbstractKinematicHardening[source]#
Bases:
ModuleAn abstract module for Armstrong-Frederic type kinematic hardening.
-
nvars:
AbstractVar[int]# The number of kinematic hardening variables
-
nvars:
- class LinearKinematicHardening[source]#
Bases:
ModuleLinear kinematic hardening model.
\[\dot{\bX} = \dfrac{2}{3}H\dot{\bepsp}\]References
Prager, W. (1956). A new method of analyzing stresses and strains in work-hardening plastic solids.
-
H:
float# Linear kinematic hardening modulus
- nvars = 1#
-
H:
- class ArmstrongFrederickHardening[source]#
Bases:
AbstractKinematicHardeningArmstrong-Frederick kinematic hardening model.
References
- Armstrong, P. J., & Frederick, C. O. (1966).
“A Mathematical Representation of the Multiaxial Bauschinger Effect for Hardening Materials.” CEGB Report RD/B/N731.
- Chaboche, J. L. (1991). On some modifications of kinematic hardening to
improve the description of ratchetting effects. International journal of plasticity, 7(7), 661-678.
-
C:
Array# Kinematic hardening modulus
-
gamma:
Array# Nonlinear recall modulus
-
nvars:
AbstractVar[int] = 2# The number of kinematic hardening variables