Source code for jaxmat.tensors.utils

import jax.numpy as jnp
import optax


[docs] def safe_fun(fun, x, norm=None, eps=1e-16): """ Safely applies a function to an input, avoiding numerical issues near zero. This function applies ``fun(x)`` only when the norm of ``x`` exceeds a small tolerance ``eps``. Otherwise, it returns zero. This is useful for ensuring numerical stability in cases where evaluating ``fun`` at or near zero could result in undefined or unstable behavior (e.g., division by zero). Parameters ---------- fun : Callable The function to apply safely. x : array-like Input array or tensor. norm : Callable, optional A norm or magnitude function used to test whether ``x`` is sufficiently large. Defaults to the identity function. eps : float, optional Small threshold to determine whether ``x`` is treated as nonzero. Defaults to 1e-16. Returns ------- array-like ``fun(x)`` if ``norm(x) > eps``, otherwise ``0`` (of the same shape as ``x``). """ if norm is None: norm = lambda x: x nonzero_x = jnp.where(norm(x) > eps, x, 0 * x) return jnp.where(norm(x) > eps, fun(nonzero_x), 0)
[docs] def safe_sqrt(x, eps=1e-16): """ Computes a numerically safe square root. Ensures the argument to the square root is greater than `eps` to avoid taking the square root of zero or negative values, which could cause instability or NaNs. Parameters ---------- x : array-like Input array or tensor. eps : float, optional Minimum threshold for `x` before taking the square root. Defaults to 1e-16. Returns -------- array-like The square root of `x` for `x > eps`, otherwise 0. """ nonzero_x = jnp.where(x > eps, x, 0.0) return jnp.where(x > eps, jnp.sqrt(nonzero_x), 0.0)
[docs] def safe_norm(x, eps=1e-16, **kwargs): """ Wrapper around ``optax.safe_norm`` that computes a numerically stable norm. This function prevents numerical instability when computing vector norms for small magnitudes by internally applying a stability threshold. Parameters ---------- x : array-like Input vector or tensor. eps : float, optional Small constant added for numerical stability. Defaults to ``1e-16``. **kwargs: Additional arguments passed to ``optax.safe_norm``. Returns ------- array-like The numerically stable norm of ``x``. """ return optax.safe_norm(x, eps, **kwargs)
[docs] def FischerBurmeister(x, y): r""" Computes the scalar Fischer-Burmeister function. The Fischer-Burmeister function is defined as: $$\Phi(x, y) = x + y - \sqrt{x^2 + y^2}$$ and is commonly used in complementarity problem formulations to provide a semi-smooth reformulation of the complementarity conditions $$x \geq 0, y \geq 0, xy = 0$$. """ return x + y - safe_sqrt(x**2 + y**2)
[docs] def rotation_matrix_direct(theta, axis): """ Calculate the rotation matrix for rotating around an arbitrary axis by angle theta. """ x, y, z = axis[0], axis[1], axis[2] c = jnp.cos(theta) s = jnp.sin(theta) C = 1 - c # Compute the matrix elements directly R = jnp.array( [ [x * x * C + c, x * y * C - z * s, x * z * C + y * s], [y * x * C + z * s, y * y * C + c, y * z * C - x * s], [z * x * C - y * s, z * y * C + x * s, z * z * C + c], ] ) return R
[docs] def euler_to_rotation(phi1, Phi, phi2): """Euler's angle → rotation matrix (Bunge convention ZXZ)""" c1, s1 = jnp.cos(phi1), jnp.sin(phi1) cP, sP = jnp.cos(Phi), jnp.sin(Phi) c2, s2 = jnp.cos(phi2), jnp.sin(phi2) R = jnp.array( [ [c1 * c2 - s1 * s2 * cP, -c1 * s2 - s1 * c2 * cP, s1 * sP], [s1 * c2 + c1 * s2 * cP, -s1 * s2 + c1 * c2 * cP, -c1 * sP], [s2 * sP, c2 * sP, cP], ] ) return R