Source code for jaxmat.tensors.utils

import jax.numpy as jnp
import optax


[docs] def safe_fun(fun, x, norm=None, eps=1e-16): """ Safely applies a function to an input, avoiding numerical issues near zero. This function applies ``fun(x)`` only when the norm of ``x`` exceeds a small tolerance ``eps``. Otherwise, it returns zero. This is useful for ensuring numerical stability in cases where evaluating ``fun`` at or near zero could result in undefined or unstable behavior (e.g., division by zero). Parameters ---------- fun : Callable The function to apply safely. x : array-like Input array or tensor. norm : Callable, optional A norm or magnitude function used to test whether ``x`` is sufficiently large. Defaults to the identity function. eps : float, optional Small threshold to determine whether ``x`` is treated as nonzero. Defaults to 1e-16. Returns ------- array-like ``fun(x)`` if ``norm(x) > eps``, otherwise ``0`` (of the same shape as ``x``). """ if norm is None: norm = lambda x: x nonzero_x = jnp.where(norm(x) > eps, x, 0 * x) return jnp.where(norm(x) > eps, fun(nonzero_x), 0)
[docs] def safe_sqrt(x, eps=1e-16): """ Computes a numerically safe square root. Ensures the argument to the square root is greater than `eps` to avoid taking the square root of zero or negative values, which could cause instability or NaNs. Parameters ---------- x : array-like Input array or tensor. eps : float, optional Minimum threshold for `x` before taking the square root. Defaults to 1e-16. Returns -------- array-like The square root of `x` for `x > eps`, otherwise `eps`. """ nonzero_x = jnp.where(x > eps, x, eps) return jnp.where(x > eps, jnp.sqrt(nonzero_x), eps)
[docs] def safe_norm(x, eps=1e-16, **kwargs): """ Wrapper around ``optax.safe_norm`` that computes a numerically stable norm. This function prevents numerical instability when computing vector norms for small magnitudes by internally applying a stability threshold. Parameters ---------- x : array-like Input vector or tensor. eps : float, optional Small constant added for numerical stability. Defaults to ``1e-16``. **kwargs: Additional arguments passed to ``optax.safe_norm``. Returns ------- array-like The numerically stable norm of ``x``. """ return optax.safe_norm(x, eps, **kwargs)
[docs] def FischerBurmeister(x, y): r""" Computes the scalar Fischer-Burmeister function. The Fischer-Burmeister function is defined as: $$\Phi(x, y) = x + y - \sqrt{x^2 + y^2}$$ and is commonly used in complementarity problem formulations to provide a smooth reformulation of the complementarity conditions $$x \geq 0, y \geq 0, xy = 0$$. """ return x + y - safe_sqrt(x**2 + y**2)