cones
#
- class Exp[source]#
Bases:
Cone
The primal exponential cone.
\[\mathcal{K}_\text{exp} = \{{x=(x_0,x_1,x_2) \text{ s.t. } x_0 \geq x_1\exp(x_2/x_1), \:\: x_0,x_1\geq 0\}}\]- property dual#
The dual exponential cone.
- class Pow(dim: int, alpha: float)[source]#
Bases:
Cone
The primal power cone.
\[\mathcal{P}_{{\alpha,1-\alpha}}=\{{x=(x_0,x_1,\bar{{x}}) \text{ s.t. } \|\bar{{x}}\|_2^2 \leq x_0^\alpha x_1^{{1-\alpha}}\}}\]- Parameters:
dim (int) – dimension of the cone (>= 3)
alpha (float) – Power-cone exponent, must be between 0 and 1.
- property dual#
The dual power cone.
- class Quad(dim: int = 1)[source]#
Bases:
Cone
The quadratic cone.
\[\mathcal{Q}=\{{x=(x_0,\bar{{x}}) \text{ s.t. } \|\bar{{x}}\|_2 \leq x_0\}}\]- Parameters:
dim (int, optional) – dimension of the cone, by default 1
- class RQuad(dim: int = 1)[source]#
Bases:
Cone
The rotated quadratic cone.
\[\]mathcal{Q}_r={{x=(x_0,x_1,bar{{x}}) text{ s.t. } |bar{{x}}|_2^2 leq 2x_0x_1}}
- Parameters:
dim (int, optional) – dimension of the cone, by default 1
- class SDP(dim: int)[source]#
Bases:
Cone
The cone of positive semi-definite matrices.
\[\mathcal{{S}}=\{{\boldsymbol{{X}}\in \mathbb{R}^{n imes n} \text{ s.t. } \boldsymbol{{X}}=\boldsymbol{{X}}^T \text{ and } \boldsymbol{{X}}\succeq 0\}}\]- Parameters:
dim (int) – Dimension \(n\) of the PSD \(n\times n\) matrix