Reissner-Mindlin plates#

Objectives

This demo illustrates how to implement a Reissner-Mindlin thick plate model. The main specificity of such models is that one needs to solve for two different fields: a vertical deflection field \(w\) and a rotation vector field \(\boldsymbol{\theta}\). \(\newcommand{\bM}{\boldsymbol{M}} \newcommand{\bQ}{\boldsymbol{Q}} \newcommand{\bgamma}{\boldsymbol{\gamma}} \newcommand{\btheta}{\boldsymbol{\theta}} \newcommand{\bchi}{\boldsymbol{\chi}} \renewcommand{\div}{\operatorname{div}}\)

../../_images/plate.svg

Governing equations#

We recall below the main relations defining this model in the linear elastic case.

Generalized strains#

  • Bending curvature strain \(\bchi = \dfrac{1}{2}(\nabla \btheta + \nabla^\text{T} \btheta) = \nabla^\text{s}\btheta\)

  • Shear strain \(\bgamma = \nabla w - \btheta\)

Generalized stresses#

  • Bending moment \(\bM\)

  • Shear force \(\bQ\)

Equilibrium conditions#

For a distributed transverse surface loading \(f\),

  • Vertical equilibrium: \(\div \bQ + f = 0\)

  • Moment equilibrium: \(\div \bM + \bQ = 0\)

In weak form:

\[\int_{\Omega} (\bM:\nabla^\text{s}\widehat{\btheta} + \bQ\cdot(\nabla \widehat{w} - \widehat{\btheta}))\text{d}\Omega = \int_{\Omega} f \widehat{w} \text{d}\Omega \quad \forall \widehat{w},\widehat{\btheta}\]

Isotropic linear elastic constitutive relation#

  • Bending/curvature relation:

\[\begin{align*} \begin{Bmatrix}M_{xx}\\ M_{yy} \\M_{xy} \end{Bmatrix} &= \textsf{D} \begin{bmatrix}1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1-\nu)/2 \end{bmatrix}\begin{Bmatrix}\chi_{xx} \\ \chi_{yy} \\ 2\chi_{xy} \end{Bmatrix}\\ \text{ where}\quad \textsf{D} &= \dfrac{E h^3}{12(1-\nu^2)} \end{align*}\]
  • Shear strain/stress relation:

\[\begin{align*} \bQ &= \textsf{F}\bgamma\\ \text{ where}\quad \textsf{F} &= \dfrac{5}{6}\dfrac{E h}{2(1+\nu)} \end{align*}\]

Implementation#

We first load relevant modules and functions and generate a unit square mesh of triangles.

import numpy as np
import ufl
import basix

from mpi4py import MPI
from dolfinx import fem, io
import dolfinx.fem.petsc
from dolfinx.mesh import (
    create_unit_square,
    CellType,
    DiagonalType,
    locate_entities_boundary,
)


N = 10
domain = create_unit_square(
    MPI.COMM_WORLD, N, N, cell_type=CellType.triangle, diagonal=DiagonalType.crossed
)

Next we define material properties and functions which will be used for defining the variational formulation.

# material parameters
thick = 0.05
E = 210.0e3
nu = 0.3

# bending stiffness
D = fem.Constant(domain, E * thick**3 / (1 - nu**2) / 12.0)
# shear stiffness
F = fem.Constant(domain, E / 2 / (1 + nu) * thick * 5.0 / 6.0)

# uniform transversal load
f = fem.Constant(domain, -100.0)


# Useful function for defining strains and stresses
def curvature(u):
    (w, theta) = ufl.split(u)
    return ufl.as_vector(
        [theta[0].dx(0), theta[1].dx(1), theta[0].dx(1) + theta[1].dx(0)]
    )


def shear_strain(u):
    (w, theta) = ufl.split(u)
    return ufl.grad(w) - theta


def bending_moment(u):
    DD = ufl.as_matrix([[D, nu * D, 0], [nu * D, D, 0], [0, 0, D * (1 - nu) / 2.0]])
    return ufl.dot(DD, curvature(u))


def shear_force(u):
    return F * shear_strain(u)

Now we define the corresponding function space. Our dofs are \(w\) and \(\btheta\), so the full function space \(V\) will be a mixed function space consisting of a scalar subspace related to \(w\) and a vectorial subspace related to \(\btheta\). We first use a continuous \(P^2\) interpolation for \(w\) and a continuous \(P^1\) interpolation for \(\btheta\). We then define the corresponding linear and bilinear forms.

# Definition of function space for U:displacement, T:rotation
Ue = basix.ufl.element("P", domain.basix_cell(), 2)
Te = basix.ufl.element("P", domain.basix_cell(), 1, shape=(2,))
V = fem.functionspace(domain, basix.ufl.mixed_element([Ue, Te]))

# Functions
u = fem.Function(V, name="Unknown")
u_ = ufl.TestFunction(V)
(w_, theta_) = ufl.split(u_)
du = ufl.TrialFunction(V)

# Linear and bilinear forms
dx = ufl.Measure("dx", domain=domain)
L = f * w_ * dx
a = (
    ufl.dot(bending_moment(u_), curvature(du))
    + ufl.dot(shear_force(u_), shear_strain(du))
) * dx

Boundary conditions are now defined. We consider a fully clamped boundary. Note that since we are using a mixed function space, we cannnot use the locate_dofs_geometrical function. Instead, we locate the facets on the boundary using dolfinx.mesh.locate_entities_boundary. Then we locate the dofs on such facets using locate_dofs_topological.

# Boundary of the plate
def border(x):
    return np.logical_or(
        np.logical_or(np.isclose(x[0], 0), np.isclose(x[0], 1)),
        np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)),
    )


facet_dim = 1
clamped_facets = locate_entities_boundary(domain, facet_dim, border)
clamped_dofs = fem.locate_dofs_topological(V, facet_dim, clamped_facets)

u0 = fem.Function(V)
bcs = [fem.dirichletbc(u0, clamped_dofs)]

We now solve the problem and output the result. To get the deflection \(w\), we use u.sub(0).collapse() to extract a new function living in the corresponding subspace. Note that u.sub(0) provides only an indexed view of the \(w\) component of u. The computed results is compared with the analytical maximum deflection of a clamped Love-Kirchhoff plate:

\[ w_\text{LK} = 1.265319087.10^{-3} \dfrac{f}{\mathsf{D}} \]
problem = fem.petsc.LinearProblem(
    a, L, u=u, bcs=bcs, petsc_options={"ksp_type": "preonly", "pc_type": "lu"}
)
problem.solve()

with io.VTKFile(domain.comm, "plates.xdmf", "w") as vtk:
    w = u.sub(0).collapse()
    w.name = "Deflection"
    vtk.write_function(w)

w_LK = 1.265319087e-3 * -f.value / D.value
print(f"Reissner-Mindlin deflection: {max(abs(w.vector.array)):.5f}")
print(f"Love-Kirchhoff deflection: {w_LK:.5f}")
Reissner-Mindlin deflection: 0.05380
Love-Kirchhoff deflection: 0.05264

Warning

This simple formulation may suffer from shear locking issues in the thin plate limit. We refer to the various plate tours dedicated to this specific issue for more accurate treatment of plate shear locking.

We can plot the plate deflection \(w\) and the rotation vector \(\boldsymbol{\beta} = \boldsymbol{e}_z\times \btheta\) using pyvista. \(\boldsymbol{\beta}\) represents the axis vector around which the plate is rotating.

Hide code cell source
import pyvista
from dolfinx import plot

pyvista.set_jupyter_backend("static")

Vw = w.function_space
w_topology, w_cell_types, w_geometry = plot.vtk_mesh(Vw)
w_grid = pyvista.UnstructuredGrid(w_topology, w_cell_types, w_geometry)
w_grid.point_data["Deflection"] = w.x.array
w_grid.set_active_scalars("Deflection")
warped = w_grid.warp_by_scalar("Deflection", factor=5)

plotter = pyvista.Plotter()
plotter.add_mesh(
    warped,
    show_scalar_bar=True,
    scalars="Deflection",
)
edges = warped.extract_all_edges()
plotter.add_mesh(edges, color="k", line_width=1)
plotter.show()

theta = u.sub(1).collapse()
Vt = theta.function_space
theta_topology, theta_cell_types, theta_geometry = plot.vtk_mesh(Vt)
theta_grid = pyvista.UnstructuredGrid(theta_topology, theta_cell_types, theta_geometry)
beta_3D = np.zeros((theta_geometry.shape[0], 3))
beta_3D[:, :2] = theta.x.array.reshape(-1, 2) @ np.array([[0, -1], [1, 0]])
theta_grid["beta"] = beta_3D
theta_grid.set_active_vectors("beta")

plotter = pyvista.Plotter()
plotter.add_mesh(
    theta_grid.arrows, lighting=False, scalar_bar_args={"title": "Rotation Magnitude"}
)
plotter.add_mesh(theta_grid, color="grey", ambient=0.6, opacity=0.5, show_edges=True)
plotter.show()
../../_images/e4f12304051e5192531615fada4f9e3ba2b1d3f32210affa269ac3b3147f0357.png ../../_images/7e44ae87c8e2f4ebc82e6056455a91c9ac5f975dd04e5dd69c6785c095dadbad.png